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a b s t r a c t

A method is proposed for the constructing approximate solutions of problems in impact deformation
dynamics in the form of a ray expansion of the solution at the strain discontinuity surface. The fundamental
difference in the proposed approximate method is the fact that, when constructing the ray expansions of
the solutions, account is taken of the regularities in the change in the curvatures of the surfaces of strain
discontinuities and the divergence of the rays. The main qualitative features of the method are illustrated
using the example of a one-dimensional cylindrical shock wave.

© 2009 Elsevier Ltd. All rights reserved.

Approximate solutions of unsteady problems in the theory of elasticity,2,3 viscoelasticity,4 and ideal plasticity when the system of
equations of the theory in Ref. 5 is hyperbolic are constructed using next-front ray expansions in deformation dynamics (see the review
in Ref. 1). A ray expansion is a Taylor-type series, the argument of which is the distance along the ray from a moving discontinuity surface
and the coefficients are the discontinuities in the strains and their derivatives on this surface. These coefficients are related to one another
by the compatibility conditions for the discontinuities. When it is assumed that the deformations are small or that the deformations are
continuous on the discontinuity surface (weak waves), ordinary differential equations for the discontinuities are found as a result of the
compatibility conditions, that is, for the coefficients of the ray series. The construction of the approximate solutions is concluded by solving
the corresponding Cauchy problem. This procedure is then found to be recurrent. Another situation arises when the shock wave, in the
case of an essentially non-linear form of the deformation process, serves as the discontinuity surface. In this case, the damping equations
do not follow from the conditions for the compatibility of the discontinuity. A proposal was introduced in Refs 6 and 7 for overcoming this
fundamental difficulty by expanding the intensity of a discontinuity in a power series in time. The approximate solutions of the impact
deformation boundary-value problems constructed by this method will be closer to the exact solutions the smaller the post-impact times
considered.

Another version of the modification of the ray method is proposed below, in which additional information in included concerning the
magnitude of the higher-order discontinuities in the recurrent system of damping equations. The source of this information is the linearized
solution of the problem, which enables one to represent the dynamics of the change in the parameters of the initial action, as well as the
change in the geometry of the leading edge of the wave, more precisely. This proposal is demonstrated for the simplest example of a
one-dimensional cylindrical shock wave.

1. Model relations of a non-linearly elastic isotropic medium. Boundary conditions on shock waves

The behaviour of a non-linearly elastic material in an Eulerian curvilinear system of coordinates xi (i = 1, 2, 3) is determined by the system
of equations

(1.1)
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where � and �0 are the density of the medium in the current and free state, ui and ui are the contravariant and covariant components of
the displacement vector, �i are the contravariant components of the velocity of the points of the medium, �ij and �i

k
are the covariant and

mixed components of the Almansi strain tensor, �ij and �i
j
are the contravariant and mixed components of the Euler–Cauchy stress tensor,

W is a function of the elastic potential of the medium, �i
j is the Kronecker delta, partial differentiation with respect to time is denoted by a

dot above a symbol and an index after a comma denotes the operation of covariant differentiation.
Assuming that the material is isotropic and neglecting thermal effects, the elastic potential function can be represented in the form of

a Taylor series in the neighbourhood of the free state

(1.2)

Here � and � are Lamé parameters, and l, m, n, �, 	, 
, � are higher order elastic moduli.
The system of equations (1.1) holds everywhere in the case of impact deformation problems with the exception of the discontinuity

surfaces where the large changes in the gradient of the displacements are replaced by its discontinuous representation. It is well known8

that, in shock waves, the required fields satisfy dynamic compatibility conditions, following from the integral laws for the conservation of
mass, momentum and energy:

(1.3)

A discontinuity of a quantity in them is denoted by square brackets so that [f] = f+ − f− where f+ and f− are the limit values of f as the
discontinuity surface � is approached from the two different sides, vi are the components of the unit outward normal vector, directed in
the sense of the motion of � (in the domain V+, G is the velocity of the surface � in the direction of the normal), qi are the components of
the heat flux vector and e is the internal energy density.

We further assume that the discontinuities in the surface � are regular in the sense that they satisfy the geometric and kinematic
compatibility conditions

(1.4)

The components of a tensor field, defined in the whole of the volume can be taken as f, [f],� is the tensor derivative of this field in the
surface � in the sense of the known definition,9 gij are the covariant components of the spatial metric tensor and g�� are the contravariant
components of the surface metric tensor.

The possible velocities of the shock waves can be obtained on the basis of relations (1.3) and (1.4) and the nature of the change in the
deformation fields in them can be indicated.10 Note that, for non-linear processes in the general case, action on a medium is transmitted
by three waves: a quasilongitudinal wave and two quasitransverse waves 10. The velocities of these waves are found to be functions of
the vector for the intensity of the discontinuity and prior deformations. In the general case, the solution of the boundary value problems
therefore not only involves the definition of the strain fields, deformations and stresses behind the wave fronts but, also, the definition of
the geometric characteristics of these fronts.

2. Ray solution of the one-dimensional problem of a diverging cylindrical shock wave

We will consider the one-dimensional problem of a longitudinal cylindrical shock wave as a model problem which allows the main
features of the technique proposed later to be shown. As a result of a normal action on a surface L0 (it corresponds to the boundary of a
cylindrical sheet in an unbounded space or it is the boundary of a cylinder of initial radius r0), a diverging or converging longitudinal shock
wave arises in the medium from the initial instant. The displacement field is such that ur = ur(r; t), u� = uz = 0, where r,  and z are cylindrical
coordinates and ur, u�, uz are the physical components of the displacement vector. In this case,

(2.1)
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will be a consequence of system (1.1). The displacement field in the boundary L(t) is known and can be specified by a Taylor series

(2.2)

It is subsequently possible to restrict this to a quadratic representation which is only done to shorten the calculations presented here to
some extent and is not fundamental. When there has been no earlier deformation of the medium, a velocity of the discontinuity surface
�(t), that is, of the leading edge of the longitudinal shock wave, given by the formula

(2.3)

will be a consequence of relations (1.3) and (1.4) in the case being considered.
The boundary conditions on the surface �(t) have the form

(2.4)

The plus sign corresponds to a diverging shock wave and the minus sign to a converging shock wave.
The boundary value problem (2.1)–(2.4) cannot be solved exactly in view of the non-linearity of the equation of motion and the boundary

conditions. Attention is also drawn to the fact that conditions (2.4) are specified on the moving surface r�(t), the position of which is unknown
in advance and is one of the quantities which are determined in the course of the solution. Note that, in the general case, the geometry of
the wave surface also turns out to be unknown but, in the simple case considered here, only the position of the cylindrical discontinuity
surface turns out to be unknown. The method of ray expansions is then used to determine the solution.

We assume that, in the zone in front of and behind the wave adjoining the surface �(t), the displacement field is fairly smooth and
permits up to an arbitrary k-th order partial differentiation with respect to time. We represent the required solution for ur(r; t) by the ray
series

(2.5)

where u0
r (r; t) is the given known displacement field in front of the wave, u0

r (r; t) = 0 in the case considered and t�(r) is the eikonal equation.
The series (2.5) is similar in type to a Taylor series but its coefficients 	i are calculated on the moving surface �(t). If it is assumed that the
equations of motion not only hold in a small neighbourhood of the surface �(t) and the consequences of their differentiation up to k-times
also hold, then, by writing the resulting equations in discontinuities on the surface �(t), we obtain the recurrence relations

(2.6)

where i = 0 corresponds to the initial equations of motion in the discontinuities. If acceleration waves were considered, then the quantity
	i+2 would not appear among the arguments in relations (2.6). In this case, equalities (2.6) can be considered as a system of ordinary
differential equations, and the values of 	i would be determined by its successive integration. The existence of the quantity 	i+2 as an
argument in system (2.6) is the distinctive feature of the shock wave. It is regarded as a limitation on the applicability of the ray method.

It has already been mentioned that a version of the ray method has been proposed 6,7 in which additional expansions in �-derivatives11,12

for small post-impact times are constructed for the quantities 	i

(2.7)
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This enables us one to consider equalities (2.6) as a system of algebraic relations connecting the basic new unknowns, the coefficients
of the internal series (2.7). This proposal restricts the domain of applicability of representation (2.5) with very small times. Actually, the
non-zero curvature of the shock wave itself is the function which changes rapidly with time and appears in Eq. (2.6), proving to have the
greatest effect on the change in �	i+1/�t. The use of series (2.7) leads to the fact that the curvature is a constant quantity which is determined
by the geometry of the loaded surface. This is associated with the fact that, in the case of a non-zero curvature of the wave front, the power
functions (2.7) do not always reflect the dynamics of the change in 	i even in the case of small post-impact times.

We next consider another version of the ray method. If it is assumed that the problem has a weak non-linearity, then it would be expected
that its solution must only differ insignificantly from the solution of the analogous linearized problem. In system (2.6), we therefore replace
the unknown function 	k+2 with the solution of the linearized problem for the corresponding step. The function 	k+2 is easily found in the
linear case. Then, in other respects, when account in taken of the assumption which has been made, system (2.6) will be a closed system
for determining of the quantities 	1, 	2, . . ., 	i+1.

We will now consider the implementation of this scheme using the example of a longitudinal shock wave diverging from the surface
r = r0. For the corresponding linear problem, we obtain

(2.8)

For a quadratic law of motion L(t), it suffices to take the first two terms in the ray expansion (2.5). This enables us to reduce the ray
method to the representation of the initial equation of motion (2.1) in the discontinuities on the surface �(t)

(2.9)

The terms with a higher order of non-linearity which have not been written out are denoted by dots. Quantities occur in Eq. (2.9) which
vary over a wide range from G(t) � 1 to 	1C−1 � 1 as well as the function r�(t), which is also unknown. We assume that 	2 ≈ 	L

2 and
supplement Eqs. (2.9) with the equation

(2.10)

in which G depends on 	1 in accordance with relations (1.4) and (2.3).
System (2.9), (2.10) can either be solved numerically or using the a small parameter method. We shall well on the last method. We

define a small parameter � = 	10C−1, use the dimensionless variable s introduced above and consider the dimensionless unknown function
�(s) = 	1	−1

10 which we represent by an asymptotic series in powers of the small parameter:

Substituting this series into Eqs. (2.9) and (2.10) we can obtain

(2.11)

It is assumed here that A ∼ 1, which agrees with the possible scales of the characteristic quantities of the problem. The function �0(s)
corresponds to the solution of the linear problem and �1 is the correction to it. Solution (2.11) holds up to the domain where s ∼ �−1/4. If
s ∼ �−1/4, then series (2.11) loses uniformity and an additional expansion is required. Here, we are limited to the scale s ∼ 1.

An approximate function t�(r) can be obtained by inversion of the series for r�(t)

(2.12)
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We now return to the representation of the function ur(r; t) by series (2.5). Substituting expressions (2.11) and (2.12) into it, we obtain

(2.13)

To determine the constant 	10, 	20, it is necessary to substitute solution (2.13) into boundary condition (2.2). The structure of solution
(2.13) and the approximate technique used to obtain it do not allow the boundary condition to be exactly satisfied. If the smallness of the
post-impact time is taken into consideration, then, on substituting the expression for rL(t) into solution (2.3) and expanding the result in a
Taylor series for small times, we find

(2.14)

The next-front solution obtained in this way can be used independently as well as being included in numerical computational schemes
in which the problem of the separation of the surface of a shock wave is posed. Actually, in this case, relations (2.12) and (2.13) can
be looked at as formulae in which, for the first steps in time in the numerical procedure, the parameters 	10 and 	20 are determined
from equalities (2.14). Thereafter, 	10 and 	20 can be considered as parameters with values which are improved during the course of the
solution. A numerical computational procedure, based on the method of finite differences, is used to determine the displacement field and
the deformations in the domain far from the shock wave. This method has been considered earlier.13,14 We also note that there is no need to
confine ourselves to the first two terms in solution (2.13). It is easy to construct the solution of the corresponding linear problem by the ray
method up to an arbitrary k-th order. The replacement of 	k by the linear analogue enables us to reduce the error which is introduced into
the solution by the linear approximation for 	2. The system of non-linear differential equations for 	1, 	2, . . ., 	k−1 can also be solved using
the small parameter method. The method can also be extended to multidimensional problems of impact deformation with the difference
that, in these problems, it is necessary to determine the geometry of the ray coordinates simultaneously. The latter fact introduces certain
complications but it does change the substance of the proposed method.
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